Diffusion and Mass Transfer in Multicomponent

Mixtures of Ideal Gases

Toor (5, 6) has recently presented
methods of solution of the linearized
equations of multicomponent mass
transfer based on the generalized Fick’s
law relationship between fluxes and
gradients. Solutions are obtained in
terms of the practical diffusion coefli-
cient matrix. Although this matrix
must generally be measured directly,
it may be computed from the Maxwell-
Stefan equations when considering dif-
fusion in isothermal, isobaric mixtures
of ideal gases, in the absence of ex-
ternal fields.

This note c¢onsiders the problem of
obtaining this diffusion coefficient ma-
trix or equivalent information from the
Maxwell-Stefan equations. In the proc-
ess Toor’s method of solution of the
linearized diffusion equations (5) and
Stewart and Prober’s (4) independent
method are shown to be equivalent.

These equations may be written in
the following form for a mixture of n
+ 1 components

n+1
—C Vy{ = y a”(gg? 5 ——Q;y;),
i=1
i
i=1.,n+1 (1)
The dependent fluxes and concen-
trations (and the n 4 1th equation)
may be removed by use of the re-
straints

n+1
S‘f;zo (2)
i=1
n+1
2.’/12 1 (3)

i=1

and after substituting into Equation
(1) and converting to matrix notation

~(VC) =16, {IB1(y) + (aa)}
~Ty,[81(8) (4)

where [] represents an n x n matrix,
“1 an n x n matrix with zeroces every-
where except on the diagonal (a diag-
onal matrix), and () a column vector
made up of n elements. The elements
of the vectors and nonzero elements of
the diagonal matrices are clearly either
8, or y., the elements of [B] are given
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by
ﬂu i 77 B ¢ Ty 9 ] (5)
with

Qi3 = 0,

and the elements of (a..) are ai, au.
Let [B] (y) = (u). Then, since the
elements of a diagonal matrix and a
vector may be interchanged, Equation
(4) may be written as

C(Vy) =—[Tus + Tanal —
Ty [B11(6) (6)

where the diagonal elements of Tu,
and Te..) are the corresponding ele-
ments of (u) and (an.), respectively.

Since C may be taken as constant, it
follows that the generalized Fick’s law
of interest is

(6) =—[DIV(C) ()

with
[D]" = Tu; + Lawa] — Tys [B]
(8)

[D] is the multicomponent diffusivity

or practical diffusion coeflicient matrix.
From the earlier definitions, the off-

diagonal elements of [D]™ are

(8a)

Y. (Olz, nel T Olw)

and the diagonal elements are

n
s, ne1 {y¢ -+ ym} + 2 Oon Y

k=1
ki

(8D)

Stewart and Prober (4) give a similar

equation.

Thus [D]™ is obtained in terms of
the binary diffusion coefficients and
composition. The inversion of [D]™ is
carried out easily for a three-compo-
nent system and the results are given
elsewhere (5). The form of [D] is
cumbersome for more than three com-
ponents but the numerical inversion
may be carried out readily on a digital
computer.

However, it is possible to calculate
concentration profiles and mass trans-
fer rates in muliicomponent systems
by the linearized theory without in-
verting [D]™, for the multicomponent
mass transfer coefficient matrix, [k],
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was shown by Toor [Equations (37)
and (49) in reference 6] to be given

by
[k] = [¢] Tkoy [£] (9)

where [t] is the modal matrix of [D],
and the k. are appropriate binary mass
transfer coefficients, which depend
upon the characteristic roots of [D].
Since the modal matrix of [D]™ is the
same as the modal matrix of [D] and
the characteristic roots of [D]™" are
just the reciprocals of the characteristic
roots of [D], [k] may be computed
without inverting [D]™.

Stewart and Prober (4) develop
their method essentially with [D]™ in
place of the [D] used by Toor and
their Equation (36) is equivalent to
the above Equation (9). Hence, their
k. are evaluated with the characteristic
roots of [D]™ and their modal matrix
is the modal matrix of [D]™. In light
of the discussion in the preceding para-
graph, the two methods are seen to
yield the same results.

Also, without inverting Equation
(8) it may be noted that when y. > 0,
D,; > 0 where D,; is the i element of
the diffusivity matrix. This does not
mean, however, that species i is neces-
sarily uncoupled when the concentra-
tion of i is small, for VC, is also ap-
proaching zero as y. goes to zero.
Hence, all the terms in the flux ex-
pression

24 = - 2 Dw VC} (1l)

i=1

vanish as y; > 0 everywhere .

If, however, components 1 to n, in-
clusive, are all dilute, then Equation
(8) is a diagonal matrix which inverts
to

[D] = "Dina, (10)
so the dilute species are all uncoupled
and show binary behavior.

The above discussion has been based
on a molar reference frame. The diffu-
sion coefficient matrix may be con-
verted to any other desired reference
frame (5), but once the diffusion equa-
tions are linearized [as was done in
obtaining Equation (9)], there is little
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to be gained in converting reference
frames, since the assumption of a con-
stant diffusivity matrix implies small
concentration changes and conse-
quently small differences between ref-
erence velocities.

It is noted that the essential differ-
ence between the Dy, considered here
and those given by Curtiss and Hirsch-
felder (2) [also in Bird et al. (I)] in
the mass reference frame is not due to
the difference in reference frames but

rather is due to the fact that the latter
are defined in terms of all the gradients
including the dependent one, with the
diagonal elements chosen to be zero.
This representation is less useful in

(Continued on page 753)

A Summary of Distributional Effects in Two-Phase Slip Models

Slip between the phases of a two-
phase stream, expressed as the ratio of
average phase velocities, is an impor-
tant variable affecting both operating
characteristics and stability limits of
such systems. Consequently, a number
of models based upon different physi-
cal mechanisms have been proposed
for predicting its magnitude. One ex-
planation, first proposed by Bankoff
(1), for at least part of the slip is that
the gas phase migrates to the center of
the stream where the resistance to flow
and the stream velocity gradient are
least. Thus, when the phase velocities
are averaged over the cross section of
the stream, the average magnitude of
the gas velocity is greater than that of
the liquid due to the distribution of
the phases alone. Following Bankoff,
this distributional effect has been in-
cluded in several more recent models
(2, 3, 4, 6, 7), although it is not al-
ways apparent from the analysis at
which point the effect enters.

The purpose of this communication
is twofold: First, to derive the distribu-
tion parameter proposed by Bankoff in
a more general way, thus giving it a
more general significance, and second,
to show in which way this same dis-
tributional parameter or a modification
of it enters the models presented in
references (2), (3), (4), (6), and (7).
However, before proceeding to our
objective, it is mnecessary to define
briefly some of the variables of a two-
phase stream flowing in a tube or
channel.

The cross section of a two-phase
stream may be considered a probabil-
ity field, at each point of which either
of two mutually exclusive events may
occur: either gas is present, or liquid
is present. If gas is present its velocity
will be U,, and if liquid is present its
velocity will be U,. Denote the proba-
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bility that gas is observed by p. The
average magnitude of the gas velocity
in this field (the cross-sectional average
gas velocity) is

1
U, = (1)

Xl";pdA

A similar averaging procedure gives
the cross-sectional average liquid ve-
locity. The local expectation stream
velocity, U = (I —p) U, + p U,, is

averaged over the flow area as follows
1 1

— UdA = — 1—

" f ry f (1—p)

: 1
Uu dA + — U,dA (2
+A£p (2)

Multiplying and dividing the first term
1
on the right-hand side by ”y J; (1—

1
p) dA and the second term by Y -’;
p dA gives
U= (1-a)Uo+aU, (3)

where « is the fraction of the cross sec-
tion occupied by the gas phase (void
fraction) and is related to the proba-
bility p by

az—i—_ﬁ pdA

With this beginning, a general expres-
sion for Bankoff’s distribution parame-
ter can be derived.

Bankoff assumed that at each point
of a two-phase stream the velocities of
the phases are equal (U. = U.). He
then introduced the profiles of the
stream velocity and the probability as
power law functions of the distance

(4)
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from the tube wall and integrated over
the tube cross section to obtain the
slip ratio relationship

A [ l—a ]

U, LK—a
where K is a distributional parameter,
which is a function only of the expo-
nents of the power law profile rela-
tions.

Bankoff’s assumption can be written
as

(5)

U,=U (6)
and integrated over the flow area as
done in Equation (1) to obtain the
average gas velocity

1
—_ U, dA
A
T ¢ T
— dA
A S
1
X‘ J; PUdA
T—j‘_—-— (7)
— dA
A P
which, if we define
1
e
1
— UdA
A f P
P a5 ]
. — UdA
[A S paa 3 J
(8)
gives
U.:%U 9)

Substitute Equation (3) into the right-
hand side of Equation (9) and after
(Continued on page 756)
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mass transfer calculations than the
practical diffusion coefficient form.
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NOTATION

C = total molar concentration

C:. = concentration of species i

Dy; = binary diffusion coefficient

D,; = multicomponent diffusion co-
efficient

[DP] = multicomponent diffusion co-
efficient matrix with elements

[k] = multicomponent mass transfer

coeflicient matrix

k, = binary mass transfer coeffi-
cients

Tk;, = diagonal matrix whose ele-
ments are k,

n = one less than the number of

components
[t] = modal matrix of [D]
(u) = column vector defined by B(y)

Fu; = diagonal matrix with elements
of (u)

y: = mole fraction of component {

(y) = column vector with elements
1]

y, = giagonal matrix with elements
of y:

(227 = 1/ @i}

{em,1) = column vector with elements
@i, ne1

lo,,) = diagonal matrix with ele-
ments oy, na

Bi; = defined by Equation (5)

[B] = matrix whose elements are B.;

6. = molar flux of species i with

respect to molar average ve-
locity, a three vector

(8) = column vector with elements ¢
rg, = diagonal matrix with elements
- .

V = gradient operator

Subscripts

i, {, k = indices

LITERATURE CITED

1. Bird, R. B., W. E. Stewart, and E. N.
Lightfood, “Transport Phenomena,” p
570, Wiley, New York (1960).

2. Curtiss, C. F., and J. O. Hirschfelder,
J. Chem. Phys., 17, 550 (1949).

3. Maxwell, J. C., “Scientific Papers,” 2,
p- 57, Dover, New York (1952).

4, Stewart, W. E., and Richard Prober,
IEC Fundamentals, 3, 224 (1964).

5. Toor, H. L., AILChE. J., 10, 448
(1964).

8. Ibid., 460 (1964).

VYol. 11, No. 4

(Continued from page 578)

the surface, and a (horizontal) force,
acting between the molecule and other
adsorbed molecules in the immediate
vicinity., The first of these forces de-
pends upon the potential energy func-
tion between the surface and a single
gas molecule, whereas the second can
be characterized by a two-dimensional
equation of state for the adsorbed layer.
For an idealized homogeneous adsorb-
ent, the characteristic potential energy
between the surface and a single gase-
ous molecule is uniform over the sur-
face, but for a real, heterogeneous ad-
sorbent the potential energy is not the
same for all parts of the surface since
some sites are more active than others.
To characterize the heterogeneity of
the solid surface, the authors use a
Gaussian distribution function ®(U,)
for the characteristic adsorption poten-
tial energy U,. For the equation of
state of the adsorbed layer they use a
two-dimensional analogue of the van
der Waals equation which, through the
Gibbs adsorption isotherm, may be in-
tegrated to give a fractional coverage 6
at equilibrium pressure P having the
form ¢(P,U,). It is then shown that
the experimentally obtained adsorption
isotherm, up to monolayer coverage,
has the general form

8= (U, ¥ (P,U,) dU,.

Perhaps the most important contribu-
tion of the book is concerned with a
discussion of this integral equation.
The equation has four temperature-
independent molecular parameters hav-
ing clear physical significance. The
function ® involves the mean charac-
teristic potential energy of adsorption
and its (Gaussian) variance, and the
function ¢ involves the two van der
Waals constants « and g which are
two-dimensional analogues of the fa-
miliar ¢ and b in the van der Waals
equation for nonideal gases. For this
particular model numerical integrations
are presented in tabular form at the
end of the book; the calculated iso-
therms are matched with experimental
results to yield the desired molecular
parameters. This type of data reduction
enables interpretation of adsorption
data along rational molecular lines.
According to this simple but reasona-
ble model the variance of the adsorp-
tion energy is independent of the ad-
sorbate but depends only on the heter-
ogeneity of the adsorbent, and the van
der Waals constants depend only on
the nature of the adsorbate, being in-
dependent of the adsorbent. Only the
mean characteristic potential energy of
adsorption is a function of the adsorb-
ent-adsorbate pair. Molecular parame-
ters are presented for various gases
and solids, and it is reasonable to ex-
pect that at least some of these may be
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correlated in terms of more readily
available macroscopic properties.

In addition to a detailed analysis of
the heterogeneous solid-mobile gas
model, the authors devote a chapter to
a lucid discussion of the various heats
of adsorption and their interrelation,
and another chapter to a generous
treatment of intermolecular potentials
between solids and adsorbed gases. The
latter, unfortunately, does not include
any mention of the effect of nonadditiv-
ity which, as Sinanoglu and Pitzer have
shown, is by no means negligible.

Dr. Ross, Professor of Colloid Sci-
ence at Rensselaer Polytechnic Insti-
tute, and his former student and as-
sociate, Dr. Olivier, have performed a
valuable service to the chemical pro-
fession in summarizing the present state
of monolayer physical adsorption, a sub-
ject to which Professor Ross and his
co-workers have contributed much
original material. As pointed out in the
foreword by Professor de Boer, the
complex subject of the physical adsorp-
tion of gases on solids, which has for so
long been known only empirically, is
now at last beginning to stand on a
sound theoretical foundation, one on
which future research workers may
build with confidence. This well-writ-
ten monograph will serve admirably to
introduce interested chemical engineers
to one of the fascinating frontiers of
current research in molecular thermo-
dynamics.

J. M. PrausNITZ
UNIVERSITY OF CALIFORNIA

Process Systems Analysis and Control,
Donald R. Coughanowr and Lowell B.
Koppel, McGraw-Hill Book Company, Inc.,
New York (1965), 491 pages, $15.50.

Although it has become apparent in
recent years that one of the major
areas of application of control systems
is the chemical and petroleum indus-
tries, there has been a decided lack
of textbooks written for the chemical
engineer and the chemist that deal
with this type of analysis. The current
book is therefore welcome as an at-
tempt to familiarize the chemical engi-
neer with available process control
techniques from both an analytical and
a simulation point of view.

The first half of the book is devoted
to linear-systems analysis of such topies
as open- and closed-loop systems, root
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