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Toor (5, 6) has recently presented 
methods of solution of the linearized 

by was shown by Toor [Equations ( 3 7 )  
and (49) in reference 61 to be given @', = 0161 - O L l , * + l  

a&* = 0, 

and the elements of (awl) are a&,ntl. where [ t ]  is the modal matrix of [ D ] ,  
Let [PI (y)  = ( u ) .  Then, since the and the k, are appropriate binary mass 
elements of a diagonal matrix and a transfer coefficients, which depend 
vector may be interchanged, Equation upon the Characteristic roots of [ D ] .  
(4)  may be written as Since the modal matrix of [D]-' is the 

c ( vy) = - [ r u ,  + ra,+lJ - same as the modal matrix of [ D ]  and 
the characteristic roots of [Dl-' are 

rYJ [fill (8) ( 6 )  just the reciprocals of the characteristic 
where the diagonal elements of ru, roots of [D], [k] may be computed 
and rocncl] are the corresponding ele- without inverting [D]-'. 
ments of ( u )  and (anil), respectively. Stewart and Prober ( 4 )  develop 

Since c may be taken as constant, it their method essentially with [D]-' in 
follows that the generalized Fick's law place of the [ D ]  used by Toor and 
Of interest is their Equation ( 3 6 )  is equivalent to 

the above Equation (9) .  Hence, their (i) = - [Dl V ( C )  ( 7 )  k, are evaluated with the characteristic 
roots of ED]" and their modal matrix 

[DI-' = ru ,  + [an+1] - ry, [p] is the modal matrix of [D]". In light 

( 8 )  of the discussion in the preceding para- 
graph, the two methods are seen to 

[ D ]  is the multicomponent diffusivity yield the same results. 
ntl or practical diffusion coefficient matrix. Also, without inverting Equation 

j=1 i#i Dcj -+ 0 where D,j is the ii element of 
the diffusivity matrix. This does not 
mean, however, that species i is neces- 
sarily uncoupled when the concentra- 
tion of i is small, for VC4 is also ap- 
pioaching zero as yl goes to zero. 
Hence, all the terms in the flux ex- 

(5) 

[kl = [tl r k l ,  [tl-' (9)  
equations of multicomponent mass with by 
transfer based on the generalized Fick's 
law relationship between fluxes and 
gradients. Solutions are obtained in 
terms of the practical diffusion coeffi- 
cient matrix. Although this matrix 
must generally be measured directly, 
it may be computed from the Maxwell- 
Stefan equations when considering dif- 
fusion in isothermal, isobaric mixtures 
of ideal gases, in the absence of ex- 
ternal fields. 

This note Considers the problem of 
obtaining this diffusion coefficient ma- 
trix or equivalent information from the 
Maxwe]l-Stefan equations. the proc- 
ess Toor's method of solution of the 
linearized diffusion equations (5) and 
Stewart and Prober's ( 4 )  independent 
method are shown to be equivalent. 

These equations may be written in 
the following form for a mixture of n + 1 components 

with 

2 From the earlier definitions, the off- 

(") 

( 8 )  it may be noted that when yt --f 0, -c Vy4 = y @*,(B_Iyj -c,gL), 
diagonal elements of [D]-' are 

y4 (a,, n+1- ai j )  
i = l , . . , n + l  (1) 

The dependent fluxes and concen- 
trations (and the n + l th  equation) 
may be removed by use of the re- 
straints 

and the diagonal elements are 
n 

a<. ntl  (ye $- y m + l }  $- a < k  y k  

k = l  
k#i pression n+1 

n 
ei = - y D+, vc, (1') 

(2)  (8b)  f 8 5 = O  - 
& - j=1 

n+ 1 j=l 
Stewart and Prober ( 4 )  give a similar 

Thus [D]" is obtained in terms of 
the binary diffusion coefficients and 
composition. The inversion of [D]" is 
carried out easily for a three-compo- 
nent system and the results are given 

- ry, [p] (8) (4) cumbersome for more than three com- 
ponents but the numerical inversion so the dilute species are all uncoupled 

where [I represents an f l  x matrix, may be carried out readily on a digital and show binary behavior. 
r ,  an n x n matrix with zeroes every- computer. The above discussion has been based 
where except on the diagonal ( a  diag- However, it is possible to calculate on a molar reference frame. The diffu- 
onal matrix), and ( )  a column vector concentration profiles and mass trans- sion coefficient matrix may be con- 
made up of n elements. The elements fer rates in muhicomponent systems verted to any other desired reference 
of the vectors and nonzero elements of by the linearized theory without in- frame (5), but once the diffusion equa- 
the diagonal matrices are clearly either verting for the multicomponent tions are linearized [as was done in 
Bt or yt, the elements of [PI are given mass transfer coefficient matrix, [k], obtaining Equation (9)],  there is little 
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( 3 )  equation. 
vanish as y4 + 0 everywhere . 

If, however, components 1 to n, in- 
clusive, are all dilute, then Equation 
(8) is a diagonal matrix which inverts 
to 

p h = l  
3 = 1  

and after substituting into Equation 
(1) and converting to matrix notation 

- ( V C )  = ' 6 ,  - :cPl(y) + ( a n i l ) }  elsewhere (5). The form of [D] is [Dl = TD*,"+l, (10) 

- 



to be gained in converting reference It is noted that the essential differ- rather is due to the fact that the latter 
fiames, since the assumption of a con- ence between the D,, considered here are defined in terms of all the gradients 
stant diffusivity matrix implies small and those given by Curtiss and Hirsch- including the dependent one, with the 
concentration changes and conse- felder ( 2 )  [also in Bird et al. (I)] in diagonal elements chosen to be zero. 
quently small differences between ref- the mass reference frame is not due to This representation is less useful in 
erence velocities. the d8srence in reference frames but (Continued on page 755) 
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Slip between the phases of a two- 
phase stream, expressed as the ratio of 
ayerage phase velocities, is an impor- 
tant variable affecting both operating 
characteristics and stability limits of 
such systems. Consequently, a number 
of models based upon different physi- 
cal mechanisms have been proposed 
for predicting its magnitude. One ex- 
planation, first proposed by Bankoff 
(1 ) , for at least part of the slip is that 
the gas phase migrates to the center of 
the stream where the resistance to flow 
and the stream velocity gradient are 
least. Thus, when the phase velocities 
are averaged over the cross section of 
the stream, the average magnitude of 
the gas velocity is greater than that of 
the liquid due to the distribution of 
the phases alone. Following BankoE, 
this distributional effect has been in- 
cluded in several more recent models 
(2, 3, 4, 6, 7) ,  although it is not al- 
ways apparent from the analysis at 
which point the effect enters. 

The purpose of this communication 
is twofold: First, to derive the distribu- 
tion parameter proposed by Bankoff in 
a more general way, thus giving it a 
more general significance, and second, 
to show in which way this same dis- 
tributional parameter or a modification 
of it enters the models presented in 
references (2 ) ,  ( 3 ) ,  ( 4 ) ,  (6), and (7). 
However, before proceeding to our 
objective, it is necessary to define 
briefly some of the variables of a two- 
phase stream flowing in a tube or 
channel. 

The cross section of a two-phase 
stream may be considered a probabil- 
ity field, at each point of which either 
of two mutually exclusive events may 
occur: either gas is present, or liquid 
is present. If gas is present its velocity 
will be U,, and if liquid is present its 
velocity will be U,. Denote the proba- 
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bility that gas is observed by p .  The 
average magnitude of the gas velocity 
in this field (the cross-sectional average 
gas velocity) is 

A similar averaging procedure gives 
the cross-sectional average liquid ve- 
locity. The Iocal expectation stream 
velocity, U = (1 - p )  U ,  -+ p U, ,  is 
averaged over the flow area as follows 

t J d A = - i  1 (1-p) 
A A 

from the tube wall and integrated over 
the tube cross section to obtain the 
slip ratio relationship 

where K is a distributional parameter, 
which is a function only of the expo- 
nents of the power law profile rela- 
tions. 

Bankoffs assumption can be written 
as 

u, = u (6) 

and integrated over the flow area as 
done in Equation (1) to obtain the 
average gas velocity 

- u ,  = - 
1 

1 A 
A 1 P  

- J: P d A  Multiplying and dividing the first term 

on the right-hand side by - (1 - 
1 
A p )  dA and the second term by - 5, 

p d A  gives - u =  (l-a)U,+cuu, (3)  

where a is the fraction of the cross sec- 
tion occupied by the gas phase (void 
fraction) and is related to the proba- 
bility p by 

a = - l  A p d A  

With this beginning, a genera1 expres- 
sion for Bankoffs distribution parame- 
ter can be derived. 

Bankoff assumed that at  each point 
of a two-phase stream the velocities of 
the phases are equal ( U ,  = Urn).  He 
then introduced the profiles of the 
stream velocity and the probability as 
power law functions of the distance 

(4) 
1 

1 
A - s, P d A  

( 7 )  

which, if we dehe  
1 
R' 
-= 

(8) 

(9) 

gives 
- 1- 
u s = - U  

Substitute Equatim (3) into the right- 
hand side of Equation (9) and after 

(Continued on page 756) 
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mass transfer calculations than the 
practical diffusion coefficient form. 
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NOTATION 

C = total molar concentration 
C ,  = concentration of species i 
D,, = binary diffusion coefficient 
D,, = multicomponent diffusion co- 

efficient 
[ D ]  = multicomponent diffusion co- 

efficient matrix with elements 
a, 

[A] = multicomponent mass transfer 
coefficient matrix 

k, = binary mass transfer coeffi- 
cients 

rki,  = diagonal matrix whose ele- 
ments are k, 

n = one less than the number of 
components 

[ t ]  
( a )  
‘UJ 

y, 
( y )  

ry, 
of y, 

(xi$ = l/D%j 

= modal matrix of [ D ]  
= column vector defined by @(y) 
= diagonal matrix with elements 

= mole fraction of component i 
= column vector with elements 

= diagonal matrix with elements 

of ( u )  

Y+ 

= column vector with elements 

rh,J = diagonal matrix with ele- 

P1, = defined by Equation (5) 
[ f i ]  = matrix whose elements are /3,, 
0, = molar flux of species i with 

respect to molar average ve- 
locity, a three vector 

= column vector with elements 6‘ 
= diagonal matrix with elements 

%n+1 

ments 

- 

(0)  
r;, 

V = gradient operator 

- 
8‘ - 

Subscripts 
i, i, k = indices 
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the surface, and a (horizontal) force, 
ncting between the molecule and other 
adsorbed molecules in the immediate 
vicinity. The first of these forces de- 
pends upon the potential energy func- 
tion between the surface and a single 
gas molecule, whereas the second can 
be characterized by a two-dimensional 
equation of state for the adsorbed layer. 
For an idealized homogeneous adsorb- 
ent, the characteristic potential energy 
between the surface and a single gase- 
ous molecule is uniform over the sur- 
face, but for a real, heterogeneous ad- 
sorbent the potential energy is not the 
same for all parts of the surface since 
some sites are more active than others. 
To characterize the heterogeneity of 
the solid surface, the authors use a 
Gaussian distribution function @ ( U , )  
for the characteristic adsorption poten- 
tial energy U,. For the equation of 
state of the adsorbed layer they use a 
two-dimensional analogue of the van 
der Waals equation which, through the 
Gibbs adsorption isotherm, may be in- 
tegrated to give a fractional coverage 0 
at equilibrium pressure P having the 
form $(P, Ua) .  It is then shown that 
the experimentally obtained adsorption 
isotherm, up to monolayer coverage, 
has the general form 

Perhaps the most important contribu- 
tion of the book is concerned with a 
discussion of this integral equation. 
The equation has four temperature- 
independent molecular parameters hav- 
ing clear physical significance. The 
function Q, involves the mean charac- 
teristic potential energy of adsorption 
and its (Gaussian) variance, and the 
function # involves the two van der 
Waals constants .CY and @ which are 
two-dimensional analogues of the fa- 
miliar a and b in the van der Waals 
equation for nonideal gases. For this 
particular model numerical integrations 
are presented in tabular form at the 
end of the book; the calculated iso- 
therms are matched with experimental 
results to yield the desired molecular 
parameters. This type of data reduction 
enables interpretation of adsorption 
data along rational molecular lines. 
According to this simple but reasona- 
ble model the variance of the adsorp- 
tion energy is independent of the ad- 
sorbate but depends only on the heter- 
ogeneity of the adsorbent, and the van 
der Waals constants depend only on 
the nature of the adsorbate, being in- 
dependent of the adsorbent. Only the 
mean characteristic potential energy of 
adsorption is a function of the adsorb- 
ent-adsorbate pair. Molecular parame- 
ters are presented for various gases 
and solids, and it is reasonable to ex- 
pect that at least some of these may be 
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correlated in terms of more readily 
available macroscopic properties. 

In addition to a detailed analysis of 
the heterogeneous solid-mobile gas 
model, the authors devote a chapter to 
a lucid discussion of the various heats 
of adsorption and their interrelation, 
and another chapter to a generous 
treatment of intermolecular potentials 
between solids and adsorbed gases. The 
latter, unfortunately, does not include 
any mention of the effect of nonadditiv- 
ity which, as Sinanoglu and Pitzer have 
shown, is by no means negligible. 

Dr. Ross, Professor of Colloid Sci- 
ence at Rensselaer Polytechnic Insti- 
tute, and his former student and as- 
sociate, Dr. Olivier, have performed a 
valuable service to the chemical pro- 
fession in summarizing the present state 
of monolayer physical adsorption, a sub- 
ject to which Professor Ross and his 
co-workers have contributed much 
original material. As pointed out in the 
foreword by Professor de Boer, the 
complex subject of the physical adsorp- 
tion of gases on solids, which has for so 
long been known only empirically, is 
now at last beginning to stand on a 
sound theoretical foundation, one on 
which future research workers may 
build with confidence. This well-writ- 
ten monograph will serve admirably to 
introduce interested chemical engineers 
to one of the fascinating frontiers of 
current research in molecular thermo- 
dynamics. 

J. M. PRAUSNITZ 
UNIVERSITY OF CALIFORNIA 

Process Systems Analysis and Control, 
Donald R. Coughanowr and Lowell B. 
Koppel, McGraw-Hill Book Company, Inc., 
New York (1965), 491 pages, $15.50. 

Although it has become apparent in 
recent years that one of the major 
areas of application of control systems 
is the chemical and petroleum indus- 
tries, there has been a decided lack 
of textbooks written for the chemical 
engineer and the chemist that deal 
with this type of analysis. The current 
book is therefore welcome as an at- 
tempt to familiarize the chemical engi- 
neer with available process control 
techniques from both an analytical and 
a simulation point of view. 

The first half of the book is devoted 
to linear-systems analysis of such topics 
as open- and closed-loop systems, root 
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